Monday 4 September 2017

Exponential Moving Average Filter Algorithm


Ich habe im Wesentlichen ein Array von Werten wie folgt: Das obige Array ist oversimplified, Im sammeln 1 Wert pro Millisekunde in meinem realen Code und ich muss die Ausgabe auf einem Algorithmus, den ich schrieb, um die nächste Peak vor einem Zeitpunkt zu finden verarbeiten. Meine Logik schlägt fehl, weil in meinem Beispiel oben 0.36 die wahre Spitze ist, aber mein Algorithmus würde rückwärts schauen und sehen die sehr letzte Zahl 0.25 als die Spitze, als theres eine Abnahme zu 0.24 vor ihm. Das Ziel ist, diese Werte zu nehmen und einen Algorithmus auf sie, die glätten sie ein wenig, so dass ich mehr lineare Werte. (Dh: Id wie meine Ergebnisse curvy, nicht jaggedy) Ive wurde gesagt, um einen exponentiellen gleitenden durchschnittlichen Filter auf meine Werte anzuwenden. Wie kann ich dies tun Es ist wirklich schwer für mich, mathematische Gleichungen zu lesen, gehe ich viel besser mit Code. Wie verarbeite ich Werte in meinem Array, die Anwendung einer exponentiellen gleitenden Durchschnittsberechnung, um sie herauszufordern, um einen exponentiellen gleitenden Durchschnitt zu berechnen. Müssen Sie einige Zustand zu halten und Sie benötigen einen Tuning-Parameter. Dies erfordert eine kleine Klasse (vorausgesetzt, Sie verwenden Java 5 oder höher): Instantiate mit dem Decay-Parameter, die Sie wollen (kann Abstimmung sollte zwischen 0 und 1) und dann mit Average () zu filtern. Beim Lesen einer Seite auf einige mathematische Rekursion, alles, was Sie wirklich wissen müssen, wenn Sie es in Code ist, dass Mathematiker gerne Indizes in Arrays und Sequenzen mit Indizes schreiben. (Theyve einige andere Anmerkungen außerdem, die nicht helfen.) Jedoch ist die EMA ziemlich einfach, da Sie nur an einen alten Wert erinnern müssen, der keine komplizierten Zustandarrays erfordert. Beantwortet Feb 8 12 at 20:42 TKKocheran: Ziemlich viel. Isn39t es schön, wenn die Dinge einfach sein können (Wenn Sie mit einer neuen Sequenz beginnen, erhalten Sie einen neuen Mittelwert.) Beachten Sie, dass die ersten paar Begriffe in der durchschnittlichen Sequenz wird ein bisschen durch Randeffekte springen, aber Sie erhalten die mit anderen gleitenden Durchschnitten auch. Allerdings ist ein guter Vorteil, dass Sie die gleitende durchschnittliche Logik in die Mittelung einwickeln und experimentieren können, ohne den Rest des Programms zu viel zu stören. Ndash Donal Fellows Ich habe eine harte Zeit, Ihre Fragen zu verstehen, aber ich werde versuchen, trotzdem zu beantworten. 1) Wenn Ihr Algorithmus 0,25 statt 0,36 gefunden hat, dann ist es falsch. Es ist falsch, weil es eine monotone Zunahme oder Abnahme (das ist immer nach oben oder immer nach unten). Wenn Sie ALLE Ihre Daten nicht klassifizieren, sind Ihre Datenpunkte - wie Sie sie darstellen - nichtlinear. Wenn Sie wirklich den maximalen Wert zwischen zwei Zeitpunkten finden wollen, dann schneiden Sie Ihr Array von tmin zu tmax und finden Sie das Maximum dieses Unterarrays. 2) Nun ist das Konzept der gleitenden Durchschnitte sehr einfach: vorstellen, dass ich die folgende Liste haben: 1.4, 1.5, 1.4, 1.5, 1.5. Ich kann es glätten, indem ich den Durchschnitt von zwei Zahlen: 1.45, 1.45, 1.45, 1.5. Beachten Sie, dass die erste Zahl ist der Durchschnitt von 1,5 und 1,4 (zweite und erste Zahlen) die zweite (neue Liste) ist der Durchschnitt von 1,4 und 1,5 (dritte und zweite alte Liste) die dritte (neue Liste) der Durchschnitt von 1,5 und 1,4 (Vierte und dritte), und so weiter. Ich könnte es Zeitraum drei oder vier gemacht haben, oder n. Beachten Sie, wie die Daten viel glatter sind. Ein guter Weg, um zu sehen, gleitende Durchschnitte bei der Arbeit ist, gehen Sie zu Google Finance, wählen Sie eine Aktie (versuchen Tesla Motors ziemlich volatil (TSLA)) und klicken Sie auf Technische Daten am unteren Rand des Diagramms. Wählen Sie Moving Average mit einer bestimmten Periode und Exponential gleitenden Durchschnitt, um ihre Differenzen zu vergleichen. Exponentielle gleitende Durchschnitt ist nur eine weitere Ausarbeitung dieser, aber Gewichte die älteren Daten weniger als die neuen Daten ist dies ein Weg, um die Glättung nach hinten auszugleichen. Bitte lesen Sie den Wikipedia-Eintrag. Also, dies ist eher ein Kommentar als eine Antwort, aber die kleine Kommentar-Box war nur zu klein. Viel Glück. Wenn Sie Probleme mit der Mathematik haben, könnten Sie mit einem einfachen gleitenden Durchschnitt statt exponentiell gehen. Also die Ausgabe erhalten Sie die letzten x-Terme durch x geteilt werden. Ungetestetes Pseudocode: Beachten Sie, dass Sie die Anfangs - und Endteile der Daten behandeln müssen, da deutlich, dass Sie die letzten 5 Ausdrücke nicht durchschnittlich sind, wenn Sie auf Ihrem 2. Datenpunkt sind. Außerdem gibt es effizientere Methoden, diesen gleitenden Durchschnitt (sum sum - älteste neueste) zu berechnen, aber dies ist, um das Konzept von dem, was passiert, zu bekommen. Antwort # 2 am: August 22, 2010, 07:29:01 am »Haben andere erwähnt, sollten Sie einen IIR (unendliche Impulsantwort) Filter anstatt der FIR (Finite Impulse Response) Filter, die Sie jetzt verwenden. Es gibt mehr dazu, aber auf den ersten Blick werden FIR-Filter als explizite Windungen und IIR-Filter mit Gleichungen implementiert. Das besondere IIR-Filter, das ich viel in Mikrocontrollern verwende, ist ein einpoliges Tiefpaßfilter. Dies ist das digitale Äquivalent eines einfachen R-C-Analogfilters. Für die meisten Anwendungen haben diese bessere Eigenschaften als der Kastenfilter, den Sie verwenden. Die meisten Verwendungen eines Box-Filter, die ich begegnet bin, sind ein Ergebnis von jemand nicht Aufmerksamkeit in der digitalen Signalverarbeitung Klasse, nicht als Ergebnis der Notwendigkeit ihrer besonderen Eigenschaften. Wenn Sie nur wollen, um hohe Frequenzen zu dämpfen, dass Sie wissen, Rauschen sind, ist ein einpoliges Tiefpassfilter besser. Der beste Weg, um ein digitales in einem Mikrocontroller zu implementieren, ist in der Regel: FILT lt - FILT FF (NEW - FILT) FILT ist ein Stück persistenten Zustand. Dies ist die einzige persistente Variable, die Sie benötigen, um diesen Filter zu berechnen. NEU ist der neue Wert, den der Filter mit dieser Iteration aktualisiert. FF ist die Filterfraktion. Die die Schwere des Filters einstellt. Betrachten Sie diesen Algorithmus und sehen Sie, dass für FF 0 der Filter unendlich schwer ist, da sich der Ausgang nie ändert. Für FF 1 ist das eigentlich gar kein Filter, da der Ausgang nur dem Eingang folgt. Nützliche Werte sind dazwischen. Auf kleinen Systemen wählen Sie FF auf 1/2 N, so dass die Multiplikation mit FF als Rechtsverschiebung um N Bits erreicht werden kann. Beispielsweise kann FF 1/16 betragen und das Multiplizieren mit FF daher eine Rechtsverschiebung von 4 Bits. Andernfalls benötigt dieses Filter nur eine Subtraktion und eine Addition, obwohl die Zahlen in der Regel größer als der Eingangswert sein müssen (mehr über die numerische Genauigkeit in einem separaten Abschnitt weiter unten). Ich normalerweise nehmen A / D-Messwerte deutlich schneller als sie benötigt werden und wenden Sie zwei dieser Filter kaskadiert. Dies ist das digitale Äquivalent von zwei R-C-Filtern in Serie und dämpft um 12 dB / Oktave über der Rolloff-Frequenz. Für A / D-Messungen ist es jedoch gewöhnlich relevanter, den Filter im Zeitbereich zu betrachten, indem er seine Sprungantwort betrachtet. Dies zeigt Ihnen, wie schnell Ihr System eine Änderung sehen wird, wenn die Sache, die Sie messen, ändert. Zur Erleichterung der Gestaltung dieser Filter (was nur bedeutet Kommissionierung FF und entscheiden, wie viele von ihnen zu kaskadieren), benutze ich mein Programm FILTBITS. Sie legen die Anzahl der Schaltbits für jede FF in der kaskadierten Filterreihe fest und berechnen die Schrittantwort und andere Werte. Eigentlich habe ich in der Regel laufen diese über mein Wrapper-Skript PLOTFILT. Dies führt FILTBITS, die eine CSV-Datei macht, dann die CSV-Datei. Beispielsweise ist hier das Ergebnis von PLOTFILT 4 4: Die beiden Parameter zu PLOTFILT bedeuten, dass es zwei Filter gibt, die von dem oben beschriebenen Typ kaskadiert sind. Die Werte von 4 geben die Anzahl der Schaltbits an, um die Multiplikation mit FF zu realisieren. Die beiden FF-Werte sind in diesem Fall 1/16. Die rote Spur ist die Einheit Schritt Antwort, und ist die Hauptsache zu betrachten. Dies bedeutet beispielsweise, dass sich der Ausgang des kombinierten Filters auf 90 des neuen Wertes in 60 Iterationen niederschlägt, falls sich der Eingang sofort ändert. Wenn Sie ca. 95 Einschwingzeit kümmern, dann müssen Sie ca. 73 Iterationen warten, und für 50 Einschwingzeit nur 26 Iterationen. Die grüne Kurve zeigt Ihnen den Ausgang einer einzelnen Amplitude. Dies gibt Ihnen eine Vorstellung von der zufälligen Rauschunterdrückung. Es sieht aus wie keine einzelne Probe wird mehr als eine 2,5 Änderung in der Ausgabe verursachen. Die blaue Spur soll ein subjektives Gefühl geben, was dieser Filter mit weißem Rauschen macht. Dies ist kein strenger Test, da es keine Garantie gibt, was genau der Inhalt der Zufallszahlen war, die als der weiße Rauscheneingang für diesen Durchlauf von PLOTFILT ausgewählt wurden. Seine nur, um Ihnen ein grobes Gefühl, wie viel es gequetscht werden und wie glatt es ist. PLOTFILT, vielleicht FILTBITS, und viele andere nützliche Dinge, vor allem für PIC-Firmware-Entwicklung ist verfügbar in der PIC Development Tools-Software-Release auf meiner Software-Downloads-Seite. Hinzugefügt über numerische Genauigkeit Ich sehe aus den Kommentaren und nun eine neue Antwort, dass es Interesse an der Diskussion der Anzahl der Bits benötigt, um diesen Filter zu implementieren. Beachten Sie, dass das Multiplizieren mit FF Log 2 (FF) neue Bits unterhalb des Binärpunkts erzeugt. Bei kleinen Systemen wird FF gewöhnlich mit 1/2 N gewählt, so daß diese Multiplikation tatsächlich durch eine Rechtsverschiebung von N Bits realisiert wird. FILT ist daher meist eine feste Ganzzahl. Beachten Sie, dass dies ändert keine der Mathematik aus der Prozessoren Sicht. Wenn Sie beispielsweise 10-Bit A / D-Messwerte und N 4 (FF 1/16) filtern, benötigen Sie 4 Fraktionsbits unter den 10-Bit-Integer-A / D-Messwerten. Einer der meisten Prozessoren, youd tun 16-Bit-Integer-Operationen aufgrund der 10-Bit-A / D-Lesungen. In diesem Fall können Sie immer noch genau die gleichen 16-Bit-Integer-Opertions, aber beginnen mit der A / D-Lesungen um 4 Bits verschoben verschoben. Der Prozessor kennt den Unterschied nicht und muss nicht. Das Durchführen der Mathematik auf ganzen 16-Bit-Ganzzahlen funktioniert, ob Sie sie als 12,4 feste oder wahre 16-Bit-Ganzzahlen (16,0 Fixpunkt) betrachten. Im Allgemeinen müssen Sie jedem Filterpole N Bits hinzufügen, wenn Sie aufgrund der numerischen Darstellung kein Rauschen hinzufügen möchten. Im obigen Beispiel müsste das zweite Filter von zwei 1044 18 Bits haben, um keine Informationen zu verlieren. In der Praxis auf einer 8-Bit-Maschine bedeutet, dass youd 24-Bit-Werte verwenden. Technisch nur den zweiten Pol von zwei würde den größeren Wert benötigen, aber für Firmware Einfachheit ich in der Regel die gleiche Darstellung, und damit der gleiche Code, für alle Pole eines Filters. Normalerweise schreibe ich eine Unterroutine oder Makro, um eine Filterpol-Operation durchzuführen, dann gelten, dass für jeden Pol. Ob eine Unterroutine oder ein Makro davon abhängt, ob Zyklen oder Programmspeicher in diesem Projekt wichtiger sind. So oder so, ich benutze einige Scratch-Zustand, um NEU in die Subroutine / Makro, die FILT Updates, sondern auch lädt, dass in den gleichen Kratzer NEU war in. Dies macht es einfach, mehrere Pole anzuwenden, da die aktualisierte FILT von einem Pol ist Die NEUE der nächsten. Wenn ein Unterprogramm, ist es sinnvoll, einen Zeiger auf FILT auf dem Weg in, die auf nur nach FILT auf dem Weg nach draußen aktualisiert wird. Auf diese Weise arbeitet das Unterprogramm automatisch auf aufeinanderfolgenden Filtern im Speicher, wenn es mehrmals aufgerufen wird. Mit einem Makro benötigen Sie nicht einen Zeiger, da Sie in der Adresse passieren, um auf jeder Iteration zu arbeiten. Code-Beispiele Hier ist ein Beispiel für ein Makro wie oben für eine PIC 18 beschrieben: Und hier ist ein ähnliches Makro für eine PIC 24 oder dsPIC 30 oder 33: Beide Beispiele sind als Makros mit meinem PIC-Assembler-Präprozessor implementiert. Die mehr fähig ist als eine der eingebauten Makroanlagen. Clabacchio: Ein weiteres Thema, das ich erwähnen sollte, ist die Firmware-Implementierung. Sie können eine einpolige Tiefpassfilter-Subroutine einmal schreiben, dann mehrfach anwenden. Tatsächlich schreibe ich normalerweise solch eine Unterroutine, um einen Zeiger im Gedächtnis in den Filterzustand zu nehmen, dann ihn den Zeiger voranbringen lassen, so daß er nacheinander leicht aufgerufen werden kann, um mehrpolige Filter zu verwirklichen. Ndash Olin Lathrop Apr 20 12 at 15:03 1. Dank sehr viel für Ihre Antworten - alle von ihnen. Ich beschloss, dieses IIR-Filter zu verwenden, aber dieser Filter wird nicht als Standard-Tiefpaßfilter verwendet, da ich die Zählerwerte berechnen und sie vergleichen muss, um Änderungen in einem bestimmten Bereich zu erkennen. Da diese Werte von sehr unterschiedlichen Dimensionen abhängig von Hardware Ich wollte einen Durchschnitt nehmen, um in der Lage sein, auf diese Hardware spezifischen Änderungen automatisch reagieren. Wenn Sie mit der Beschränkung einer Macht von zwei Anzahl von Elementen zu durchschnittlich leben können (dh 2,4,8,16,32 etc), dann kann die Teilung einfach und effizient auf einem getan werden Low-Performance-Mikro ohne dedizierte Division, weil es als Bit-Shift durchgeführt werden kann. Jede Schicht rechts ist eine Macht von zwei zB: Der OP dachte, er hatte zwei Probleme, die Teilung in einem PIC16 und Speicher für seinen Ringpuffer. Diese Antwort zeigt, dass die Teilung nicht schwierig ist. Zwar adressiert es nicht das Gedächtnisproblem, aber das SE-System erlaubt Teilantworten, und Benutzer können etwas von jeder Antwort für selbst nehmen, oder sogar redigieren und kombinieren andere39s Antworten. Da einige der anderen Antworten eine Divisionsoperation erfordern, sind sie ähnlich unvollständig, da sie nicht zeigen, wie dies auf einem PIC16 effizient erreicht werden kann. Ndash Martin Apr 20 12 at 13:01 Es gibt eine Antwort für einen echten gleitenden Durchschnitt Filter (auch bekannt als Boxcar-Filter) mit weniger Speicher Anforderungen, wenn Sie dont mind Downsampling. Es heißt ein kaskadiertes Integrator-Kamm-Filter (CIC). Die Idee ist, dass Sie einen Integrator, die Sie nehmen Differenzen über einen Zeitraum, und die wichtigsten Speicher-sparende Gerät ist, dass durch Downsampling, müssen Sie nicht jeden Wert des Integrators zu speichern. Es kann mit dem folgenden Pseudocode implementiert werden: Ihre effektive gleitende durchschnittliche Länge ist decimationFactorstatesize, aber Sie müssen nur um Stateize Proben zu halten. Offensichtlich können Sie bessere Leistung erzielen, wenn Ihr stateize und decimationFactor Potenzen von 2 sind, so dass die Divisions - und Restoperatoren durch Shifts und Masken ersetzt werden. Postscript: Ich stimme mit Olin, dass Sie immer sollten einfache IIR-Filter vor einem gleitenden durchschnittlichen Filter. Wenn Sie die Frequenz-Nullen eines Boxcar-Filters nicht benötigen, wird ein 1-poliger oder 2-poliger Tiefpassfilter wahrscheinlich gut funktionieren. Auf der anderen Seite, wenn Sie für die Zwecke der Dezimierung filtern (mit einer hohen Sample-Rate-Eingang und Mittelung es für die Verwendung durch einen Low-Rate-Prozess), dann kann ein CIC-Filter genau das, was Sie suchen. (Vor allem, wenn Sie stateize1 verwenden und den Ringbuffer insgesamt mit nur einem einzigen vorherigen Integrator-Wert zu vermeiden) Theres einige eingehende Analyse der Mathematik hinter der Verwendung der ersten Ordnung IIR-Filter, Olin Lathrop bereits beschrieben hat auf der Digital Signal Processing Stack-Austausch (Enthält viele schöne Bilder.) Die Gleichung für diese IIR-Filter ist: Dies kann mit nur Ganzzahlen und keine Division mit dem folgenden Code implementiert werden (möglicherweise benötigen einige Debugging, wie ich aus dem Speicher wurde.) Dieser Filter approximiert einen gleitenden Durchschnitt von Die letzten K Proben durch Einstellen des Wertes von alpha auf 1 / K. Führen Sie dies im vorherigen Code durch die Definition von BITS auf LOG2 (K), dh für K 16 gesetzt BITS auf 4, für K 4 gesetzt BITS auf 2, etc. (Ill Überprüfung der Code hier aufgelistet, sobald ich eine Änderung und Bearbeiten Sie diese Antwort, wenn nötig.) Antwort # 1 am: Juni 23, 2010, um 4:04 Uhr Heres ein einpoliges Tiefpassfilter (gleitender Durchschnitt, mit Cutoff-Frequenz CutoffFrequency). Sehr einfach, sehr schnell, funktioniert super, und fast kein Speicher Overhead. Hinweis: Alle Variablen haben einen Bereich über die Filterfunktion hinaus, mit Ausnahme des übergebenen newInput Hinweis: Dies ist ein einstufiger Filter. Mehrere Stufen können zusammen kaskadiert werden, um die Schärfe des Filters zu erhöhen. Wenn Sie mehr als eine Stufe verwenden, müssen Sie DecayFactor anpassen (was die Cutoff-Frequenz betrifft), um sie zu kompensieren. Und natürlich alles, was Sie brauchen, ist die beiden Zeilen überall platziert, brauchen sie nicht ihre eigene Funktion. Dieser Filter hat eine Rampenzeit, bevor der gleitende Durchschnitt diejenige des Eingangssignals darstellt. Wenn Sie diese Rampenzeit umgehen müssen, können Sie MovingAverage einfach auf den ersten Wert von newInput anstelle von 0 initialisieren und hoffen, dass der erste newInput kein Ausreißer ist. (CutoffFrequency / SampleRate) einen Bereich zwischen 0 und 0,5 aufweist. DecayFactor ist ein Wert zwischen 0 und 1, in der Regel in der Nähe von 1. Single-precision Schwimmer sind gut genug für die meisten Dinge, ich bevorzuge nur Doppel. Wenn Sie mit ganzen Zahlen bleiben müssen, können Sie DecayFactor und Amplitude Factor in Fractional Integers umwandeln, in denen der Zähler als Integer gespeichert wird und der Nenner eine Ganzzahl von 2 ist (so können Sie Bit-Shift nach rechts als die Nenner, anstatt sich während der Filterschleife teilen zu müssen). Zum Beispiel, wenn DecayFactor 0.99, und Sie Ganzzahlen verwenden möchten, können Sie DecayFactor 0.99 65536 64881. Und dann immer wenn Sie multiplizieren mit DecayFactor in Ihrer Filterschleife, nur verschieben Sie das Ergebnis 16. Für weitere Informationen über dieses, ein ausgezeichnetes Buch thats Online, Kapitel 19 auf rekursive Filter: dspguide / ch19.htm PS Für das Moving Average-Paradigma, einen anderen Ansatz für die Einstellung DecayFactor und AmplitudeFactor, die möglicherweise mehr relevant für Ihre Bedürfnisse, können Sie sagen, dass Sie wollen, dass die vorherigen, etwa 6 Artikeln gemittelt, es diskret tun, fügen Sie 6 Elemente und teilen durch 6, so Können Sie den AmplitudeFactor auf 1/6 und DecayFactor auf (1.0 - AmplitudeFactor) einstellen. Antwortete May 14 12 at 22:55 Jeder andere hat kommentiert gründlich über den Nutzen der IIR vs FIR, und auf Power-of-two-Division. Id nur, um einige Implementierungsdetails zu geben. Das unten genannte funktioniert gut auf kleinen Mikrocontrollern ohne FPU. Es gibt keine Multiplikation, und wenn Sie N eine Potenz von zwei halten, ist die gesamte Division ein-Zyklus-Bit-Verschiebung. Basic FIR-Ringpuffer: Halten Sie einen laufenden Puffer der letzten N-Werte und einen laufenden SUM aller Werte im Puffer. Jedes Mal, wenn eine neue Probe kommt, subtrahieren Sie den ältesten Wert im Puffer von SUM, ersetzen Sie ihn durch das neue Sample, fügen Sie das neue SUM zu SUM hinzu und geben Sie SUM / N aus. Modifizierter IIR-Ringpuffer: Halten Sie einen laufenden SUM der letzten N-Werte. Jedes Mal, wenn ein neues Sample kommt, SUM - SUM / N, fügen Sie das neue Sample hinzu und geben SUM / N aus. Antwort # 1 am: August 28, 2008, um 13:45 Uhr Wenn Sie 399m lesen Sie Recht, you39re beschreiben einen First-Order IIR-Filter der Wert you39re Subtraktion isn39t der älteste Wert, der herausfällt, sondern ist stattdessen der Durchschnitt der vorherigen Werte. Erstklassige IIR-Filter können sicherlich nützlich sein, aber I39m nicht sicher, was du meinst, wenn Sie vorschlagen, dass der Ausgang ist der gleiche für alle periodischen Signale. Bei einer Abtastrate von 10 kHz liefert das Einspeisen einer 100 Hz-Rechteckwelle in ein 20-stufiges Kastenfilter ein Signal, das für 20 Abtastungen gleichmäßig ansteigt, für 30 sitzt, für 20 Abtastungen gleichmäßig sinkt und für 30 sitzt. Ein erster Ordnung IIR-Filter. Ndash Supercat Aug 28 13 am 15:31 wird eine Welle, die scharf anfängt zu steigen und allmählich Niveaus in der Nähe (aber nicht auf) das Eingabe-Maximum, dann scharf beginnt zu fallen und allmählich in der Nähe (aber nicht auf) der Eingabe Minimum. Sehr unterschiedliches Verhalten. Ndash Supercat Ein Problem ist, dass ein einfacher gleitender Durchschnitt kann oder auch nicht nützlich sein. Mit einem IIR-Filter können Sie einen schönen Filter mit relativ wenigen Calcs erhalten. Die FIR Sie beschreiben kann Ihnen nur ein Rechteck in der Zeit - ein sinc in freq - und Sie können nicht die Seitenkeulen zu verwalten. Es kann lohnt sich, in ein paar ganzzahlige Multiplikatoren zu werfen, um es eine schöne symmetrische abstimmbare FIR, wenn Sie die Zeitschaltuhren ersparen können. Ndash ScottSeidman: Keine Notwendigkeit für Multiplikatoren, wenn man einfach jede Stufe der FIR entweder den Durchschnitt der Eingabe auf diese Stufe und ihre vorherigen gespeicherten Wert, und dann speichern Sie die Eingabe (wenn man hat Der numerische Bereich, man könnte die Summe anstatt den Durchschnitt verwenden). Ob das besser ist als ein Box-Filter, hängt von der Anwendung ab (die Sprungantwort eines Boxfilters mit einer Gesamtverzögerung von 1ms wird zum Beispiel eine böse d2 / dt-Spitze aufweisen, wenn der Eingang geändert wird, und wieder 1ms später, wird aber haben Die minimal mögliche d / dt für einen Filter mit einer Gesamtverzögerung von 1ms). Ndash supercat Wie mikeselectricstuff sagte, wenn Sie wirklich brauchen, um Ihren Speicherbedarf zu reduzieren, und Sie dont dagegen Ihre Impulsantwort ist eine exponentielle (anstelle eines rechteckigen Puls), würde ich für einen exponentiellen gleitenden durchschnittlichen Filter gehen . Ich nutze sie ausgiebig. Mit dieser Art von Filter, brauchen Sie nicht jeden Puffer. Sie brauchen nicht zu speichern N Vergangenheit Proben. Nur einer. So werden Ihre Speicheranforderungen um einen Faktor von N reduziert. Auch brauchen Sie keine Division für das. Nur Multiplikationen. Wenn Sie Zugriff auf Gleitpunktarithmetik haben, verwenden Sie Fließkomma-Multiplikationen. Andernfalls können ganzzahlige Multiplikationen und Verschiebungen nach rechts erfolgen. Allerdings sind wir im Jahr 2012, und ich würde Ihnen empfehlen, Compiler (und MCUs), mit denen Sie mit Gleitkommazahlen arbeiten können. Abgesehen davon, dass mehr Speicher effizienter und schneller (Sie dont haben, um Elemente in jedem kreisförmigen Puffer zu aktualisieren), würde ich sagen, es ist auch natürlich. Weil eine exponentielle Impulsantwort besser auf die Art und Weise reagiert, wie sich die Natur verhält, in den meisten Fällen. Ein Problem mit dem IIR-Filter fast berührt von Olin und Supercat, aber anscheinend von anderen ignoriert ist, dass die Rundung nach unten führt einige Ungenauigkeiten (und möglicherweise Bias / Trunkierung). Unter der Annahme, dass N eine Potenz von zwei ist und nur ganzzahlige Arithmetik verwendet wird, beseitigt das Shift-Recht systematisch die LSBs des neuen Samples. Das bedeutet, dass, wie lange die Serie jemals sein könnte, wird der Durchschnitt nie berücksichtigen. Nehmen wir z. B. eine langsam abnehmende Reihe (8,8,8,8,7,7,7,7,6,6) an und nehmen an, daß der Durchschnitt tatsächlich 8 ist. Die Faust 7 Probe bringt den Durchschnitt auf 7, unabhängig von der Filterstärke. Nur für eine Probe. Gleiche Geschichte für 6, usw. Jetzt denke an das Gegenteil. Die serie geht auf. Der Durchschnitt wird auf 7 für immer bleiben, bis die Probe groß genug ist, um es zu ändern. Natürlich können Sie für die Bias korrigieren, indem Sie 1 / 2N / 2, aber das nicht wirklich lösen, die Präzision Problem. In diesem Fall wird die abnehmende Reihe für immer bei 8 bleiben, bis die Probe 8-1 / 2 (N / 2) ist. Für N4 zum Beispiel, wird jede Probe über Null halten den Durchschnitt unverändert. Ich glaube, eine Lösung für das implizieren würde, um einen Akkumulator der verlorenen LSBs halten. Aber ich habe es nicht weit genug, um Code bereit, und Im nicht sicher, es würde nicht schaden, die IIR Macht in einigen anderen Fällen der Serie (zum Beispiel, ob 7,9,7,9 würde durchschnittlich 8 dann). Olin, Ihre zweistufige Kaskade würde auch eine Erklärung brauchen. Halten Sie zwei durchschnittliche Werte mit dem Ergebnis der ersten in die zweite in jeder Iteration eingezogen halten. Was ist der Vorteil dieses C-Algorithmus für Null-Latenz-exponentiellen gleitenden Durchschnitt Letzte Änderung: 2012-08-13 Ich habe versucht, eine Niederfrequenz-Cutoff in c, die im Wesentlichen nimmt einen Strom von Zahlen und glättet die Ausgabe (Filterung von hoher Frequenz Bewegung / Jitter), aber es ist wichtig, dass die vorgewichteten Zahlen sofort betrachtet werden, da die Daten zeitkritisch sind (es ist, eine Bewegungssimulationsbasis unter Verwendung einer Ausgabe von einer kleinen Spielsoftware zu steuern). Ive bekam einen funktionierenden gewichteten gleitenden Durchschnitt Algoithm, konnte aber mit etwas ein wenig mehr reagieren an der Vorderseite zu tun, und ich fand dies: - Der Pseudo-Code gibt es wie folgt: Eingaben: Preis (NumericSeries), Period (NumericSimple) Variablen: Faktor 2 / (Periode1) Verzögerung (Periode-1) / 2 Ende sonst beginnen ZLEMA-Faktor (2Price-Pricelag) (1-Faktor) ZLEMA1 Ende Ive übersetzt Es in C und mein Code ist wie folgt: Allerdings scheint es nicht so zu verhalten, wie Id erwarten. Es scheint fast da, aber manchmal bekomme ich einen etwas niedrigeren Wert als alle Elemente in der Warteschlange (wenn sie alle höher sind). Meine Warteschlange und die Anzahl der Elemente in ihr als Parameter übergeben werden, mit der jüngsten an der Front zu allen Zeiten, auch ich passieren einen inkrementierenden Zähler beginnend bei 0, wie von der Funktion erforderlich. Ich bin nicht sicher, Ive interpretiert die Bedeutung von ZLEMA1 korrekt als seine nicht klar, in seinem Pseudocode, so dass Ive davon ausgegangen, dass die letzten Anrufe zlema und auch Im Annahme Preis tatsächlich bedeutet Price0. Vielleicht Ive erhielt dieses falsch Ich soll die wirklichen zlema berechneten Werte zurück zu meiner ursprünglichen Warteschlange vor dem folgenden Anruf kopieren Ich ändere nicht die ursprüngliche Warteschlange an allen anderen als nur, alle Werte eins bis zum Ende zu verschieben und das späteste am Anfang einzusetzen . Der Code, den ich verwenden, um dies zu tun ist: Wäre äußerst dankbar, wenn jemand mit einem besseren Verständnis der Mathematik könnte bitte Verstand überprüfen dies für mich zu sehen, ob Ive etwas etwas falsch Vielen Dank im Voraus, wenn Sie helfen können Erstens danke all für Ihre Eingabe, viel geschätzt Das macht Sinn, denke ich, so nehme ich an, dann das Beste, das ich hoffen kann, ist einfach ein exponentieller gleitender Durchschnitt, akzeptiert wird es ein wenig Verzögerung, aber dies wird durch die stärkere Front Gewichtung als in typisch gewichtet gegeben minimiert werden Ich habe auch diesen Algorithmus, aber ein ähnliches Problem, dass die Werte nicht ganz richtig erscheinen (es sei denn, dies ist die Art der Formel). Zum Beispiel, sagen, mein Array enthält 16 Werte, alle 0.4775 - die Ausgabe ist 0.4983, aber Id erwarten, dass es 0.4775 Dies schaut nach rechts zu Ihnen. / Exponentieller gleitender Durchschnitt. / Float ema (float vals, int numVals, int currentSample) statischer Schwimmerfaktor 0 statischer float lastema 0 float ema if (currentSample lt 1) ema vals0 Faktor 2.0 / ((float) numVals) 1.0) sonst ema (Faktor vals0) (1.0 - Faktor) lastema) lastema ema return ema Umgekehrt ist manchmal die Ausgabe niedriger als jeder einzelne Eingang, auch wenn alle höher sind. Es wird auf die gleiche Weise wie zlema (.) Oben mit einem inkrementierenden Zähler aufgerufen. Die Formel und Pseudocode für diese sind hier: - autotradingstrategy. wordpress / 2009/11/30 / expo nential-mo ving-avera ge / Danke nochmals, Entschuldigung für mein Missverständnis einiger Grundlagen: (Viele Grüße, Chris J As Für den Code, den ich gepostet, youre Recht über die Array-Größe Situation. Das sollte leicht behoben werden. Is für Ihre Fragen: 1) Die Filter-Konstante stellt eine Frequenz cutoff. Ich habe eine digitale Signalverarbeitung (DSP) für diese Technik. De. wikipedia. org/wi ki / Low-pas sfilter ist eine einfache Erklärung. Sie möchten die Discrete-Time-Realisierung. In meinem Fall ist die A die RC-Konstante, über die sie sprechen. Die Frequenz, die sie ausschaltet, liegt also über 1 / (2piA). Wenn Sie nicht über ein Verständnis von Frequency-Domain Theorie haben, kann dies kompliziert. In Ihrem Fall, Je höher Sie A, desto niedriger die Frequenz, die dieser Filter zulassen wird, bedeutet, dass es die Kurve aus mehr und mehr glätten wird. Je niedriger Sie es machen, desto mehr Rauschen ist im System erlaubt. Denken Sie daran, dass ein Muss größer oder gleich 1 wirksam sein muss. Ich habe die XLS wieder befestigt, diesmal ohne die wechselnden rand () Zahlen. Passen Sie die A-Konstante an und beobachten Sie, wie es quotsmoothsquot (oder filtert) die hochfrequenten Variationen. 2) Der letzte Punkt des Eingabefeldes hat den letzten Wert. 3) Gleiches gilt für das Ausgabe-Array. Der letzte ist der jüngste Wert. 5) Die NUMVALS ist beliebig. Sie können kontinuierlich auf die Eingabe-und Ausgabe-Array so oft wie youd wie hinzufügen und es würde nicht den Filter. Insbesondere verwendete ich 49 Punkte. Aber ich kann leicht löschen Sie die letzten 20 und die ersten 29 Ausgänge bleiben die gleichen. Die Funktion basiert nicht darauf, wie viele Punkte verwendet werden. Ich möchte erwähnen, dass ich diese Funktion für eine einmalige Konvertierung entwickelt habe. Wenn Sie eine Umwandlung für den nächsten Wert on the fly tun wollten, konnten Sie etwas einfacheres versuchen (wie angebracht). Wieder Im rostig auf c. Ich hoffe, das ist richtig. Das einzige, was Sie benötigen, um zu liefern ist die Eingangs - und Filterkonstante. Lassen Sie mich wissen, wenn dies hilft.

No comments:

Post a Comment